Classification of compact objects in Top

In my previous post, I showed that compact objects in the category of topological spaces have to be finite. Today we improve this to a full characterisation.

Lemma. Let X be a topological space. Then X is a compact object in \operatorname{\underline{Top}} if and only if X is finite discrete.

This result dates back to Gabriel and Ulmer [GU71, 6.4], as was pointed out to me by Jiří Rosický in reply to my MO question and answer of this account (of which this post is essentially a retelling). Our proof is different from the one given in [GU71], instead using a variant of an argument given in the n-Lab.

Before giving the proof, we construct an auxiliary space against which we will be testing compactness. It is essentially the colimit constructed in the n-Lab, except that we swapped the roles of 0 and 1 (the reason for this will become clear in the proof).

Definition. For all n \in \mathbb N, let X_n be the topological space \mathbb N_{\geq n} \times \{0,1\}, where the nonempty open sets are given by U_{n,m} = \mathbb N_{\geq m} \times \{0\} \cup \mathbb N_{\geq n} \times \{1\} for m \geq n. They form a topology since

    \begin{align*} U_{n,m_1} \cap U_{n,m_2} &= U_{n, \max(m_1,m_2)}, \\ \bigcup_i U_{n,m_i} &= U_{n,\min\{m_i\}}. \end{align*}

Define the map f_n \colon X_n \to X_{n+1} by

    \[(x,\varepsilon) \mapsto \left\{\begin{array}{ll} (x,\varepsilon), & x > n, \\ (n+1,\varepsilon), & x = n. \end{array}\right.\]

This is continuous since f_n^{-1}(U_{n+1,m}) equals U_{n,m} if m > n+1 and U_{n,n} if m = n+1. Let X_\infty be the colimit of this diagram.

Since the elements (x,\varepsilon), (y,\varepsilon) \in X_n map to the same element in X_{\max(x,y)}, we conclude that X_\infty is the two-point space \{0,1\}, where the map X_n \to X_\infty = \{0,1\} is the second coordinate projection. Moreover, the colimit topology on \{0,1\} is the indiscrete topology. Indeed, neither \mathbb N_{\geq n} \times \{0\} \subseteq X_n nor \mathbb N_{\geq n} \times \{1\} \subseteq X_n are open.

Proof of Lemma. If X is compact, then my previous post shows that X is finite. Let U \subseteq X be any subset, and let f \colon X \to X_\infty = \{0,1\} be the indicator function \mathbb I_U. It is continuous because X_\infty has the indiscrete topology. Since X is a compact object, f has to factor through some g \colon X \to X_n. Let h \colon X \to X_n \to \N_{\geq n} be the first coordinate projection, i.e.

    \[g(x) = \left\{\begin{array}{ll}(h(x),1), & x \in U, \\ (h(x),0), & x \not\in U. \end{array}\right.\]

Let m \in \N_{\geq n} be a number such that m > h(x) for all x \not\in U; this exists because X is finite. Then g^{-1}(U_{n,m}) = U, which shows that U is open. Since U was arbitrary, we conclude that X is discrete.

Conversely, every finite discrete space X is a compact object. Indeed, any map out of X is continuous, and finite sets are compact in \operatorname{\underline{Set}}. \qedsymbol

[GU71] Gabriel, Peter and Ulmer, Friedrich, Lokal präsentierbare Kategorien. Lecture Notes in Mathematics 221. Springer-Verlag, Berlin-New York, 1971. DOI: 10.1007/BFb0059396.

Compact objects in the category of topological spaces

We compare two competing notions of compactness for topological spaces. Besides the usual notion, there is the following:

Definition. Let \mathscr C be a cocomplete category. Then an object X \in \ob \mathscr C is compact if \Hom(X,-) commutes with filtered colimits.

Exercise. An R-module M is compact if and only if it is finitely generated.

We want to study compact objects in the category of topological spaces. One would hope that this corresponds to compact topological spaces. However, this is very far off:

Lemma. Let X \in \Top be a compact object. Then X is finite.

Proof. Let Y be the set X with the indiscrete topology, i.e. \mathcal T_Y = \{\varnothing, Y\}. It is the union of all its finite subsets, and this gives it the colimit topology because a subset U \subseteq Y is open if and only if its intersection with each finite subset is. Indeed, if U were neither \varnothing nor Y, then there exist y_1, y_2 \in Y with y_1 \in U and y_2 \not\in U. But then U \cap \{y_1,y_2\} is not open, because \{y_1,y_2\} inherits the indiscrete topology from Y.

Therefore, if X is a compact object, then the identity map X \to Y factors through one of these finite subsets, hence X is finite. \qedsymbol

However, the converse is not true. In fact the indiscrete space on a two element set is not a compact object, as is explained here.

Corollary. Let X \in \Top be a compact object. Then X is a compact topological space.

Proof. It is finite by the lemma above. Every finite topological space is compact. \qedsymbol

Originally, this post relied on the universal open covering of my previous post to show that a compact object in \Top is compact; however the above proof shows something much stronger.

A fun example of a representable functor

This post is about representable functors:

Definition. Let F \colon \mathscr C \to \Set be a functor. Then F is representable if it is isomorphic to \Hom(A,-) for some A \in \ob \mathscr C. In this case, we say that A represents F.

Exercise. If such A exists, then it is unique up to unique isomorphism.

Really one should encode the isomorphism \Hom(A,-) \stackrel\sim\to F as well, but this is often dropped from the notation. By the Yoneda lemma, every natural transformation \Hom(A,-) \to F is uniquely determined by the element of F(A) corresponding to the identity of A.

When \Hom(A,-) \to F is a natural isomorphism, the corresponding element a \in F(A) is called the universal object of F. It has the property that for every B \in \mathscr C and any b \in F(B), there exists a unique morphism f \colon A \to B such that f(a) = b.

Example. The forgetful functor \Ab \to \Set is represented by \Z. Indeed, the natural map

    \begin{align*} \Hom(\Z,M) &\to M\\ f &\mapsto f(1) \end{align*}

is an isomorphism. The universal element is 1 \in \Z.

Example. Similarly, the forgetful functor \Ring \to \Set is represented by \Z[x]. The universal element is x.

A fun exercise (for the rest of your life!) is to see whether functors you encounter in your work are representable. See for example this post about some more geometric examples.

The main example for today is the following:

Lemma. The functor \Top\op \to \Set that associates to a topological space (X,\mathcal T_X) its topology \mathcal T_X is representable.

Proof. Consider the topological space Y = \{0,1\} with topology \{\varnothing, \{1\},\{0,1\}\}. Then there is a natural map

    \begin{align*} \Hom(X,Y) &\to \mathcal T_X\\ f &\mapsto f^{-1}(\{1\}). \end{align*}

Conversely, given an open set U, we can associate the characteristic function \mathbb I_U. This gives an inverse of the map above. \qedsymbol

The space Y we constructed is called the Sierpiński space. The universal open set is \{1\}.

Remark. The space Y^I represents the data of open sets U_i for i \in I: for any continuous map f \colon X \to Y^I, we have U_i = f^{-1}(Y_i), where Y_i = \pi_i^{-1}(\{1\}) \subseteq Y^I. If Z_i denotes the complementary open, then the U_i form a cover of X if and only if \bigcap_{i \in I} Z_i = \varnothing. This corresponds to the statement that f lands in Y^I\setminus\{(0,0,\ldots)\}.

Thus, the open cover Y^I\setminus\{0\} = \bigcup_{i \in I} Y_i is the universal open cover, i.e. for every open covering X = \bigcup U_i there exists a unique continuous map f \colon X \to Y^I\setminus\{0\} such that U_i = f^{-1}(Y_i).

Sites without a terminal object

Let \mathcal C be a site with a terminal object X. Then the cohomology on the site is defined as the derived functors of the global sections functor \Gamma(X,-). But what do we do if the site does not have a terminal object?

The solution is to define H^i(\mathcal C,-) as \Ext{\mathcal O}{i}(\mathcal O,-), where \mathcal O denotes the structure sheaf if \mathcal C is a ringed site. If \mathcal C is not equipped with a ring structure, we take \mathcal O to be the constant sheaf \underline{\mathbb Z}; this makes \mathcal C into a ringed site.

Lemma. Let \mathcal C be a site with a terminal object X. Then the above definitions agree, i.e.

    \[H^i(X,-) = \Ext{\mathcal O}{i}(\mathcal O,-).\]

Proof. Note that \Hom_{\mathcal O}(\mathcal O, \mathscr F) = \Gamma(X, \mathscr F), since any map \mathcal O(X) \to \mathscr F(X) can be uniquely extended to a morphism of (pre)sheaves \mathcal O \to \mathscr F, and conversely every such morphism is determined by its map on global sections. The result now follows since \Ext{\mathcal O}{i}(\mathcal O, -) and H^i(X,-) are defined as the derived functors of \Hom_{\mathcal O}(\mathcal O,-) and \Gamma(X,-) respectively. \qedsymbol

Remark. From this perspective, it seems quite magical that for a sheaf \mathscr F of \mathcal O_X-modules on a ringed space (X,\mathcal O_X), the cohomology groups \Ext{\mathcal O_X}{i}(\mathcal O_X,\mathscr F) and \Ext{\underline{\Z}}{i}(\underline{\Z},\mathscr F) agree. It turns out that this is true in the setting of ringed sites as well; see Tag 03FD.

So why is this useful? Let’s give some examples of sites that do not have a terminal object.

Example. Let G be a group scheme over k. Then we have a stack BG of G-torsors. The objects of BG are pairs (U,P), where U is a k-scheme and P is a G-torsor over U. Morphisms (U,P) \to (U',P') are pairs (f,g) \colon (U,P) \to (U',P') making the diagram

Rendered by QuickLaTeX.com

commutative. This forces the diagram to be a pullback, since all maps between G-torsors are isomorphisms.

The (large) Zariski site on BG is defined by declaring coverings \{(U_i, P_i) \to (U,P)\} to be families such that \{U_i \to U\} is a Zariski covering (and similarly for the étale and fppf sites).

Now does the category BG have a terminal object? This would be a G-torsor P_0 \to U_0 such that every other G-torsor P \to U admits a unique map to it, realising P as the pullback of P_0 along U \to U_0. But this object would exactly be the classifying stack U_0 = BG, which does not exist as a scheme (or algebraic space). The fact that a terminal object does not exist is the whole reason we need to define it as a stack in the first place!

Example. Let X/k be a variety in characteristic p > 0; for simplicity, let’s say k = \mathbb F_p. Then consider the crystalline site of X/\Spec(\Z/p^n\Z). Roughly speaking, its objects are triples (U,T,\delta), where U \to X is an open immersion, U \to T is a thickening with a map to \Spec{\F_p} \to \Spec{\Z/p^n\Z}, and \delta is a divided power structure on the ideal sheaf \mathcal I_U \subseteq \mathcal O_T (with a compatibility condition w.r.t. \Spec{\F_p} \to \Spec{\Z/p^n\Z}). There is a suitable notion of morphisms.

This site does not have a terminal object, basically because there are many thickenings on U = X with the respective compatibilities. (I am admittedly no expert, and it could very well be true that this is not 100% correct. However, I am certain that the crystalline site in general does not have a terminal object.)