Rings are abelian

In this post, we prove the following well-known lemma:

Lemma. Let (R,+,\times,0,1) satisfy all axioms of a ring, except possibly the commutativity a + b = b + a. Then (R,+) is abelian.

That is, additive commutativity of a ring is implied by the other axioms.

Proof. By distributivity, we have 2(a+b) = 2a + 2b, so multiplication by 2 is a homomorphism. By our previous post, this implies R is abelian. \qedsymbol

Criteria for groups to be abelian

This is a review of some elementary criteria for a group to be abelian.

Lemma. Let G be a group. Then the following are equivalent:

  1. G is abelian,
  2. The map G \to G given by g \mapsto g^2 is a group homomorphism;
  3. The map G \to G given by g \mapsto g^{-1} is a group homomorphism;
  4. The diagonal G \subseteq G \times G is normal.

Proof. We prove that each criterion is equivalent to (1).

For (2), note that (gh)^2 = ghgh, which equals gghh if and only if gh = hg.

For (3), note that (gh)^{-1} = h^{-1}g^{-1}, which equals g^{-1}h^{-1} if and only if gh = hg.

For (4), clearly \Delta_G \colon G \hookrightarrow G \times G is normal if G is abelian. Conversely, note that (e,h)(g,g)(e,h^{-1}) = (g,hgh^{-1}), which is in the diagonal if and only if gh = hg. \qedsymbol