Application of Schur orthogonality

The post that made me google ‘latex does not exist’.

Lemma. Let \epsilon be a finite group of order \Sigma, and write \equiv for the set of irreducible characters of \epsilon. Then

  1.     \[\forall (,) \in \epsilon : \hspace{1em} \sum_{\Xi \in \equiv} \Xi(()\overline\Xi()) = \begin{cases}|C_\epsilon(()|, & \exists \varepsilon \in \epsilon: (\varepsilon = \varepsilon), \\ 0, & \text{else}.\end{cases}\]

  2.     \[\forall \Xi,\underline\Xi \in \equiv : \hspace{1em} \Sigma^{-1}\sum_{\text O)) \in \epsilon} \Xi(\text O)))\overline{\underline\Xi}(\text O))) = \begin{cases}1, & \Xi = \underline\Xi,\\ 0, &\text{else}.\end{cases}\]

Proof. First consider the case \epsilon = 1. This is just an example; it could also be something much better. Then the second statement is obvious, and the first is left as an exercise to the reader. The general case is similar. \qedsymbol

Here is a trivial consequence:

Corollary. Let \mathbf R be a positive integer, and let f \in \mathbf C^\times[\mathbf R] \setminus \{1\}. Then

    \[\sum_{X = 1}^{\mathbf R} f^X = 0.\]

Proof 1. Without loss of generality, f has exact order \mathbf R > 1. Set \epsilon = \mathbf Z/\mathbf {RZ}, let ((,)) = (1,0) \in \epsilon^2, and note that

    \[\nexists \varepsilon \in \epsilon : (\varepsilon = \varepsilon).\]

Part 1 of the lemma gives the result. \qedsymbol

Proof 2. Set \epsilon = \mathbf Z/\mathbf {RZ} as before, let \Xi \colon \epsilon \to \mathbf C^\times be the homomorphism \varepsilon \mapsto f^{3\varepsilon}, and \underline \Xi \colon \epsilon \to \mathbf C^\times the homomorphism \varepsilon \mapsto f^{2\varepsilon}. Then part 1 of the lemma does not give the result, but part 2 does. \qedsymbol

In fact, the corollary also implies the lemma, because both are true (\mathbf 1 \Rightarrow \mathbf 1).

3 thoughts on “Application of Schur orthogonality

Leave a Reply to Johan Cancel reply

Your email address will not be published. Required fields are marked *