Limits in the category of graphs

This is a first post about some categorical properties of graphs (there might be a few more).

Definition. For us, a graph is a pair G = (V, E) where V is a set and E \subseteq \mathcal P(V) is a collection of subsets of V of size 1 or 2. An element \{x,y\} \in E with x \neq y is called an edge from x to y, and a singleton \{x\} \in E is a loop at x (or sometimes an edge from x to itself). If G = (V,E), it is customary to write V(G) = V and E(G) = E.

A morphism of graphs f \colon G \to H is a map f \colon V(G) \to V(H) such that f(e) \in E(H) for all e \in E(G). The category of graphs will be denoted \mathbf{Grph}, and V \colon \mathbf{Grph} \to \mathbf{Set} will be called the forgetful functor.

Example. The complete graph K_n on n vertices is the graph (V,E) where V = \{1,\ldots,n\} and E = {V \choose 2} is the set of 2-element subsets of V. In other words, there is an edge from x to y if and only if x \neq y.

Then a morphism G \to K_n is exactly an n-colouring of G: the condition f(e) \in E(K_n) for e \in E(G) forces f(x) \neq f(y) whenever x and y are adjacent. Conversely, a morphism f \colon K_n \to G to a graph G without loops is exactly an n-clique in G: the condition that G has no loops forces f(x) \neq f(y) for x \neq y.

Lemma. The category \mathbf{Grph} has and the forgetful functor V \colon \mathbf{Grph} \to \mathbf{Set} preserves all small limits.

Proof. Let D \colon \mathscr J \to \mathbf{Grph} be a functor from a small category \mathscr J, and let V = \lim V \circ D be the limit of the underlying sets, with cone maps f_j \colon V \to V(D(j)). We will equip V with a graph structure G = (V,E) such that the maps G \to D(j) for j \in \mathscr J are morphisms and then show that the constructed G is a limit of D in \mathbf{Grph}.

To equip V with an edge set E, simply let E be the set of e \subseteq \mathcal P(V) of size 1 or 2 such that f_j(e) \in E(D(j)) for all j \in \mathscr J. Then this clearly makes G = (V,E) into a graph such that the f_j \colon G \to D(j) are graph morphisms for all j \in \mathscr J. Moreover, these maps make G into the limit cone over D: for any other cone g_i \colon H \to D(j), the underlying maps V(g_i) \colon V(H) \to V(D(j)) factor uniquely through g \colon V(H) \to V by the definition of V, and the construction of E(G) shows that g \colon V(H) \to V is actually a morphism of graphs g \colon H \to G. \qedsymbol

Remark. Note however that V does not create limits. On top of the construction above, this would mean that there is a unique graph structure G = (V,E) on V such that G is a cone over G. However, there are many such structures on V, because we can remove edges all we want (on the same vertex set V).

Example. As an example, we explicitly describe the product G \times H of two graphs G and H: by the lemma its vertex set is V(G \times H) = V(G) \times V(H). The ‘largest graph structure’ such that both projections p \colon G \times H \to G and q \colon G \times H \to H are graph morphisms is given by e \in E(G \times H) if and only if |e| \in \{1,2\} and p(e) \in E(G) and q(e) \in E(H). This corresponds to the structure found in the proof of the lemma.

For a very concrete example, note that the product of two intervals/edges G = H = K_2 is a disjoint union of two intervals, corresponding to the diagonals in \{1,2\} \times \{1,2\}. This is the local model to keep in mind.

The literature also contains other types of product graphs, which all have the underlying set V(G) \times V(H). Some authors use the notation G \times H for the categorical product or tensor product we described. The Cartesian product G \square H is defined by E(G \square H) = (E(G) \times V(H)) \cup (V(G) \times E(H)), so that the product of two intervals is a box. The strong product G \boxtimes H is the union of the two, so that the product of two intervals is a box with diagonals. There are numerous other notions of products of graphs.

Remark. Analogously, we can also show that \mathbf{Grph} has and V preserves all small colimits: just equip the set-theoretic colimit with the edges coming from one of the graphs in the diagram.

Example. For a concrete example of a colimit, let’s carry out an edge contraction. Let G be a graph, and let e = \{x,y\} be an edge. The only way to contract e in our category is to create a loop: let * be the one-point graph without edges, and let f_x, f_y \colon * \to G be the maps sending * to x and y respectively. Then the coequaliser of the parallel pair f_x, f_y \colon * \rightrightarrows G is the graph H whose vertices are V(G)/\sim, where \sim is the equivalence relation a \sim b if and only if a = b or \{a,b\} = \{x,y\}, and whose edges are exactly the images of edges in G. In particular, the edge \{x,y\} gives a loop at the image z = [x] = [y] \in V(H).

Remark. Note that the preservation of limits also follows since V has a left adjoint: to a set S we can associate the discrete graph S^{\operatorname{disc}} with vertex set S and no edges. Then a morphism S^{\operatorname{disc}} \to G to any graph G is just a set map S \to V(G).

Similarly, the complete graph with loops gives a right adjoint to V, showing that all colimits that exist in \mathbf{Grph} must be preserved by V. However, these considerations do not actually tell us which limits or colimits exist.

Leave a Reply

Your email address will not be published.