Classification of compact objects in Top

In my previous post, I showed that compact objects in the category of topological spaces have to be finite. Today we improve this to a full characterisation.

Lemma. Let X be a topological space. Then X is a compact object in \operatorname{\underline{Top}} if and only if X is finite discrete.

This result dates back to Gabriel and Ulmer [GU71, 6.4], as was pointed out to me by Jiří Rosický in reply to my MO question and answer of this account (of which this post is essentially a retelling). Our proof is different from the one given in [GU71], instead using a variant of an argument given in the n-Lab.

Before giving the proof, we construct an auxiliary space against which we will be testing compactness. It is essentially the colimit constructed in the n-Lab, except that we swapped the roles of 0 and 1 (the reason for this will become clear in the proof).

Definition. For all n \in \mathbb N, let X_n be the topological space \mathbb N_{\geq n} \times \{0,1\}, where the nonempty open sets are given by U_{n,m} = \mathbb N_{\geq m} \times \{0\} \cup \mathbb N_{\geq n} \times \{1\} for m \geq n. They form a topology since

    \begin{align*} U_{n,m_1} \cap U_{n,m_2} &= U_{n, \max(m_1,m_2)}, \\ \bigcup_i U_{n,m_i} &= U_{n,\min\{m_i\}}. \end{align*}

Define the map f_n \colon X_n \to X_{n+1} by

    \[(x,\varepsilon) \mapsto \left\{\begin{array}{ll} (x,\varepsilon), & x > n, \\ (n+1,\varepsilon), & x = n. \end{array}\right.\]

This is continuous since f_n^{-1}(U_{n+1,m}) equals U_{n,m} if m > n+1 and U_{n,n} if m = n+1. Let X_\infty be the colimit of this diagram.

Since the elements (x,\varepsilon), (y,\varepsilon) \in X_n map to the same element in X_{\max(x,y)}, we conclude that X_\infty is the two-point space \{0,1\}, where the map X_n \to X_\infty = \{0,1\} is the second coordinate projection. Moreover, the colimit topology on \{0,1\} is the indiscrete topology. Indeed, neither \mathbb N_{\geq n} \times \{0\} \subseteq X_n nor \mathbb N_{\geq n} \times \{1\} \subseteq X_n are open.

Proof of Lemma. If X is compact, then my previous post shows that X is finite. Let U \subseteq X be any subset, and let f \colon X \to X_\infty = \{0,1\} be the indicator function \mathbb I_U. It is continuous because X_\infty has the indiscrete topology. Since X is a compact object, f has to factor through some g \colon X \to X_n. Let h \colon X \to X_n \to \N_{\geq n} be the first coordinate projection, i.e.

    \[g(x) = \left\{\begin{array}{ll}(h(x),1), & x \in U, \\ (h(x),0), & x \not\in U. \end{array}\right.\]

Let m \in \N_{\geq n} be a number such that m > h(x) for all x \not\in U; this exists because X is finite. Then g^{-1}(U_{n,m}) = U, which shows that U is open. Since U was arbitrary, we conclude that X is discrete.

Conversely, every finite discrete space X is a compact object. Indeed, any map out of X is continuous, and finite sets are compact in \operatorname{\underline{Set}}. \qedsymbol

[GU71] Gabriel, Peter and Ulmer, Friedrich, Lokal präsentierbare Kategorien. Lecture Notes in Mathematics 221. Springer-Verlag, Berlin-New York, 1971. DOI: 10.1007/BFb0059396.

Leave a Reply

Your e-mail address will not be published. Required fields are marked *